APPENDIX |

Al DERIVATION OF THE HUGONIOT
EQUATIONS

The Hugoniot equations relate the pressure E in-
ternal energy per unit mass £, and density p in
front of a shock wave (P, E,, p,) to the values of
the same variables (P, E, p) after the shock wave
has passed. The density is sometimes expressed in
terms of specific volume V = 1/p,and ¥, = 1/p,
The initial pressure, internal energy, and density
are assumed to be known. In addition to the final
pressure, energy, and density, the shock velocity
U and particle velocity u, behind the shock are
unknown (the reference frame is usually chosen
s0 that the unshocked material is at rest). The Hu-
goniot equations use the conservation of mass,
momentum, and energy across the shock front to
reduce the number of unknowns from five to two.
The equation of state then provides a relation be-
tween the pressure, internal energy, and density to
completely determine the conditions behind the
shock wave.

Many derivations of the Hugoniot equations
have been published. I have found the one below
to be one of the easiest for students to ollow.

Al.l Mass conservation

Figure Al illustrates a block of material through
which a shock wave is passing. This is a “free-
body” diagram in the sense that all forces acting
on the block are explicitly shown. The cross-sec-
tional area of the block A4 is constant as the shock
moves through i1t. The pressures P and P, on the
block’s sides are not shown in the figure 1o avoid
clutter: they are completely balanced and so play
no direct role in driving the shock, so they are ig-
nored in this derivation, Only the pressures acting
on the ends of the block, in the direction of the
shock wave's motion, are significant.

The figure shows the block at two different
times, ¢ and £'. At the earliest time ¢/, the length of
the unshocked region is [, and the length of the
shocked region is /. Later, at time #, the shock
wave has progressed a distance U{r — 1) farther
to the right and the shocked end of the block,
moving at the particle velocity u,, has progressed
ug(f’ — 1) farther to the right. The unshocked end
of the block, assumed to be at rest, has not
moved. The new lengths of the unshocked regien

/.’ and shocked region /" are thus given by
L o=, — (¢ — 1) (ALl.1a)
=l + U —f—uft — 8 (ALLILb)

The mass contained in the unshocked portion of
the block at time ¢ is 1ts volume [ 4 times its den-
Sity ps, pol.A. The mass in the shocked portion is
likewise pl 4. Mass conservation just means that
the masses at times ¢ and ' must be equal. That
is,

ohA + polA = plid + pf' A (ALL2)

Canceling through the common factor A, substi-
tuting Equations ALl.1a and AL 1.1b for [/ and /.
in Equation AL 1.2, then canceling the terms pi,
and pyl, on both the left and right hand sides,

0=po(U—u)(t -0
— U@ —1 (ALL3)

Finally, canceling the common factor (¢ — ) and
rearranging, we obtain the first Hugoniot equa-
tion (3.4.1) of the text

p(U=w)=p U (AL1.4)

Al.2. Momentom conservation

Pressure P on the shocked end of the block in Fig-
ure Al.l is larger than the pressure P, on the un-
shocked end, 50 a net force F = (P — P;) A acts
toward the right, accelerating material in that di-
rection. The momentumn of material in the block
at time £, pf,u4, is thus not equal to the momen-.
tum pl,/u,A4 at time ¢. The difference is equal to
the momentum imparted by the applied force F
over the time interval ¢ —¢, F{t' — ). The net mo-
mentum balance is thus

ply upd — plyuy A
= (P — Fld(t' — 1) (AL2])

Canceling through the area .4 and substituting for
I using Equation ALI.lb, noting that the term
plu, is subtracted from itself on the left side of the
equation, and further canceling the common fac-
tor (£ — f) from the remaining terms we obtain

U —uu, = (P~ Py)  (AL2.2)

Now use Equation AL1.4 to replace p(U — u,) by
poU and rearrange to obtain the second Hugoniot
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Fig. A1.1 Free body diagrams of a shock wave
passing through a mass of material at times !
(above) and ¢ (below).

equation (3.4.2) in the text,

P— Py = plu, (AL2.3)

AlL3. Energy conservation

Like momentum, the total energy in the block at
time { is not equal to that at time ¥ because the
applied forces do work on the system. This work
is equal to the force times the distance through
which it acts. Since the displacement of the un-
shocked end of the block is zero, the total energy
gained between ¢ and ¢ is thus PAu, (' — ), equal
10 the force P4 on the shocked end of the block
times the distance u (" — f) through whach it acts.

The total energy £, (f) in the block at time ¢ is
the sum of the internal energies in the shocked
and unshocked portions and the kinetic energy in
the shocked portion:

E 1) = pol.EoA + pl EA

+ 1/2 plgéd  (AL3.1a)
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Similarly, at time ¢ the total energy is
Eu(t) = pol/Eod + pl/EA
+ % pluiA
Energy conservation thus requires
E {t) — E.{t) = PAu, (¥ — 1) (Al1.32)

Substituting Equations AL3.1a and AL3.1b into
Equation AL3.2, cancel A through as before, sub-
stitute Equation All.la for /, and Eguation
AL 1.1b for ¥, and simplify. Themmmunfanmr
(¥ — t) may then be canceled to obtain

— poEsU + pE(U — u,)
+ %ol (U~ w) = Pu, (AL3.3)

Now replace p(U' — u,) by p, [/ using the first Hu-
goniot equation (Al 1.4) to obtain

poUE — Eg) + % ptilU = Pu, ((AL3.4)

We then proceed using two auxiliary equations
that can be rcadﬂy derived from the first two Hu-
gumnt equations (Al1l.4) and (AL2.3) by elimi-
nating either U or u,, respectively, between the
two equations:

uy = V(P —Po) (V — V)

(A.3.1b)

(AlL3.5a)
and

U= /oy VIP— P)J(¥ — V) (AL3.5b)

where V' = |/pand V, = 1/p, are the specific vol-
umes of the shocked and unshocked material, re-
spectively, Subﬁututmg Equation Al3.5a fm' U,

and AL3.5b for [V in uatmn AL3.4, cannchng
the common factor , and rearranging,

E-E=%(P+P)(Vo— V) (AL36)

which is the third, and final, Hugoniot equation
(3.4.3) of the text.
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