

Presentation för VBIK 2022–11-16 Lars Weimers

Platsen där allt började

The Hellsjön R&D team 1995 ??

Bo Bijlenga Peter Normand

Rolf Pålsson

Krister Nyberg To

g Tomy Holmgren

Kjell Svensson

Rolf Jonsson

Tommy Hjort

Bo Danielsson

Market introduction seminar Cassels 1997

Martin Byggeth Bo Bijlenga Mohammed Rashwan

Roberto Rudervall

Matt Matele

John Bowles

What is HVDC Light[®] ?

- Highly controllable DC transmission
- Voltage Source Converters
- Underground/Submarine cable
- Active and reactive power control
- Power Quality
- Modularized and standardized solutions

What is HVDC Light[®] – Voltage Source Converter with IGBT:s

Insulated Gate Bipolar Transistor (IGBT)

What is HVDC Light[®] – VSC valves inside the valve compartment

All equipment assembled and tested before shipping Gotland 50 MW, 80 kV

HVDC Light

Summary on VSC Technology

O CABB Group November 17, 2022 | Slide 10

ABB AB, Grid Systenms

/DC - 10 -

HVDC Light

Summary on VSC Technology

ABB AB, Grid Systemms
 ABB domestication
 ABB domesticat

PQ-diagram

- Active power control
- Reactive power control
- AC voltage control
- DC voltage control
- Frequency control
- Flicker control

Configurations and operation modes

Asymmetric monopole, metallic return

Asymmetric monopole, ground return

Multiterminal Symmetric monopole

© ABB AB,Grid Systenms HVDC - 14 -

Bipole, metallic return

IGBT Gen 1 – Gen 5

PG3 /Gen 1

StakPak 2000A/4500V Gen 4

Hällsjön, prototype

BIGT 2000A/5200V Gen 5

ABB

Power capacity Thyristor vs IGBT

© ABB AB,Grid Systenms HVDC - 16 -

Physical Layout, 65 MVA HVDC Light[®] Converter Station

Extruded HVDC Light[®] Cable, Land

- Smaller & Lighter cables
- Robust
- Low Environmental Impact
- Weight: 1 6,5 kg per m
- Power: 60 350 MW per pair

Two cables for bipolar operation

HVDC Light[®] submarine cable for normal static use

- Conductor of copper
- HVDC polymer insulation
- Lead alloy sheath
- Steel wire armor (double layers for deep sea)
- Complete cable
 - diameter 50 125 mm
 - weight 8 50 ton/km
- 6 550 MW per bipole
- Standard voltages: 84 and 150 kV

Two cables for bipolar operation

- Power supply to remote locations becomes cost-efficient
- Power supply from renewable energy source becomes economical
- Step-wise expansion
- Short delivery times
- Easy permitting
- Leasable/Relocatable
- High availability

HVDC Light[™] Projects

atter 1	
Hagfors Hellsjon	
Gotland Tjæreborg	
Murraylink Directlink	E
Cross Sound Cable • AEP, Eagle Pass	

A REAL PROPERTY.

Project	Rating	Distance	Application	Ordered
	(MW)	(km)		
Hellsjön	3	10	Interconnection, converting AC line to DC	Apr 1994
Gotland	50	70	Wind power, underground cable	Dec 1997
Tjæreborg	7	4	Wind power, underground cable	Jun 1998
Directlink	180	65	Interconnection, underground cable	Dec 1998
Eagle Pass	36	N/A	BtB Asynchronous Tie and SVC, Dual purpose application	Jul 1999
CSC	330	40	Interconnection, submarine cable	Aug 2000
Murraylink	200	180	Interconnection, underground cable	Dec 2000
Troll	2x40	67	Offshore platform feeding, motor drive	Jun 2002

Gotland - the first commercial HVDC Light® project

Technical Data	
Commissioning year:	1999
Power rating:	50 MW
AC Voltage:	70 kV both sides
DC Voltage:	± 80 kV
DC current	350 A
Length of DC cable:	2 x 70 km

Main reasons for choosing HVDC system: Wind power (voltage support), Easy to get permission for underground cables.

Gotland HVDC Light[®]- simplified Single Line Diagram

Gotland HVDC Light[®] - The Garda Fault - Voltage dips

Ground fault in the 10 kV grid

- Simulations without HVDC Light[®]
- Simulations with HVDC Light[®]
- Measurements

Gotland HVDC Light[®]

Tjæreborg HVDC Light[®] - Denmark

- Transmitted power: 7,2 MW
- DC voltage: ± 9 kV
- Verification of wind mill parks
- In service December, 2000
- Length of DC cable: 2 x 4,3 km

"Frequency Control maximizes the utilization of the wind energy"

Tjæreborg HVDC Light[®] - simplified Single Line Diagram

6 MW wind power farm, normally connected to AC and HVDC

HVDC starts automatically at wind power >1 MW on AC cable AC cable is then opened, wind farm in islanded operation Frequency of island is controlled by HVDC control Set point anywhere between 30-65 Hz, but normally 50 Hz

At wind power <0.5 MW, HVDC is synched to AC net, and AC cable is connected

ABB

Tjæreborg – Frequency control at isolated operation

Tjæreborg HVDC Light[®]

Directlink HVDC Light project, Australia

The business case

 Take advantage of price differentials between different power networks and provide transmission capacity as merchant transmitter

The business environment

Australia has an open market

The solution

HVDC Light 180 MW ± 80 kV
 Cables 65 km, landcable

Directlink

"Enhanced reliability and competitive prices for consumers"

TransÉnergie U.S. Ltd.

Direct Link 3 x 60 MVA HVDC Light

Historical review, 1997-2000 (2015)

Two-level Converter, Generation 1

- Converter losses 3 %
- High switching frequency
- Filters required
- SPWM /3PWM

Historical review, 2000-2002

Three-level Converter, Generation 2

- Converter losses 1.7 %
- Switching frequency reduced
- Harmonic generation improved
- SPWM/3PWM

Historical review, 2005-2009 (2015)

Two-level Converter, Generation 3

- Converter losses 1.7 %
 By optimized IGBT and drive
- Lower switching frequency
- Harmonic generation maintained
- OPWM

Generation 3 evolution into Generation 4

Black start and synchronizing

- An important feature of VSC is the ability for black start
- HVDC black start is easy, synchronizing is more complicated
- After a power system has gone down power sources very soon start up in different "islands" of the power grid
- These islands are not in synchronism
- Islands will automatically interconnect by means of synchronizers if stipulated criteria are met
- Synchronizers need typically a window of phase angle ±30 ° and ΔU within ±6 % of Un simultaneously to interconnect
- HVDC converters have no inertia but can withstand synchronizing by temporarily operating in current-control mode

HVDC Light losses

Optimized the switching pattern has reduced the station losses from 3 % ~ 0,6 %

HVDC Light, technical development 1997 - 2019

LCC vs VSC station size

Pacific Intertie, Celilo Station

Approx. 310 m x 310 m

Nordlink, Wilster station

Approx. 230 m x 180 m

Station size relation VSC / LCC 50 %

500 kV bipole up to 3 GW

Exponential growth has been driven by Technical developments and Grid transformation needs

Homepage: <u>www.hitachienergy.com/hvdc</u>

